
Yosys Basic Usage Guide

Author: Ryan Cramer

Yosys: Yosys Open SYnthesus Suite

 Developed by Claire-Xenia Wolfe in 2012, it is a HDL synthesis tool, which is “open-source”, and
distributed under an ISC-like license. It converts your HDL to an Abstract Syntax Tree (AST) and RTLIL
representation. It can generate HDL gate-level netlists using a specified PDK, as well as generate
datapath and netlist visualization, as well as static timing analysis

Tools Used When Using Yosys:

- ABC
o Open-source logic synthesis and optimization engine (Developed at Berkeley). Yosys delegates

technology mapping to it (important for ASIC synthesis)
o Takes generic logic gates $and, $or, $xor, etc, and maps them to real cells described in the Liberty

(.lib) file (e.g. sky130_fd_sc_hd_and2_1)
o Optimizes the logic for delay or area
o Yosys turns RTL into the spec, ABC chooses bricks to use, and how to arrange them

- dfflibmap
o A Yosys pass specifically for flip-flops and latches
o Generic registers in RTL get turned into $dff cells in Yosys. But each PDK has multiple FF flavors

(different set/reset polarity, async vs sync).
o dfflibmap matches generic $dff cells against the available cells in the Liberty file
o ABC handles combinational, dfflibmap handles sequential

- sta
o Simple Static Timing Analysis pass inside Yosys

▪ Reads timing arcs from Liberty files
▪ Computes longest topological path in the design
▪ Reports estimated critical path delays

o Limitations
▪ No placement/routing delays (only cell delays)
▪ Meant for early estimation before PnR (place and route), for full STA use OpenSTA

NOTE: The Yosys version used in the asic-tools container is Yosys 0.51

To learn more about Yosys: please visit the v0.51 documentation

https://yosyshq.readthedocs.io/projects/yosys/en/v0.51/

Basic Usage:

Start with a simple Verilog or SystemVerilog module, such as a 32-bit comparator

`timescale 1ns/1ps

module cmp_32(
 input [31:0] A,
 input [31:0] B,
 output logic GT,
 output logic LT,
 output logic EQ
);

 always_comb begin

 GT = 1'b0;
 LT = 1'b0;
 EQ = 1'b0;

 if(A < B) begin
 LT = 1'b1;
 end

 else if(A > B) begin
 GT = 1'b1;
 end

 else begin
 EQ = 1'b1;
 end

 end

endmodule

1. Run Yosys inside the Docker container:

ubuntu@asic:~/workspace/project$ yosys

…you will then see:

2. Translate Design: yosys> read_verilog design.v

The first step is to have Yosys read your RTL. You can read Verilog or SystemVerilog files
and parse them into an AST and lowers it into RTLIL form. At this point, the design will be
abstracted. It is now behavioral code (not yet the netlist that we want).

Note: Use the “-sv” flag for SystemVerilog

yosys> read_verilog design.v

- or -

yosys> read_verilog -sv design.sv

3. Manage Heirarchy: yosys> hierarchy -check -top design

Ensure that you did not include any unused modules by specifying the top module. It
double checks for unused modules and trims them.

4. Process Conversion (proc Pass): yosys> proc

 Behavioral code becomes structured netlists, and expressions are optimized

PROC_CLEAN remove empty switches
PROC_RMDEAD remove dead branches
PROC_PRUNE remove redundant assignments

in processes
PROC_INIT extracts init attributes
PROC_ARST detects async resets
PROC_ROM converts switches to ROMs
PROC_MUX covert decision trees to

multiplexors
PROC_DLATCH convert process syncs to latches
PROC_DFF convert process syncs to FFs
PROC_MEMWR convert process memory writes

to cells
PROC_CLEAN remove empty switches from

decision trees
OPT_EXPR optimizes expressions

5. Optimization: yosys> opt
Runs optimization iterations until the program is satisfied.

OPT simple optimizations
OPT_EXPR optimize expressions
OPT_MUXTREE detect dead branches in mux trees
OPT_REDUCE consolidate $*mux and $reduce_*

inputs
OPT_MERGE detect identical cells
OPT_DFF perform DFF optimizations
OPT_CLEAN remove unused cells and wires
Rerunning OPT Passes reruns OPT passes if optimizations

can still be done

6. Flatten: yosys> flatten
Flattens the design (n-bit signals will be separated into n single-bit wires)

7. Techmap: yosys> techmap

Maps generic ops to generic target cells ($eq = XOR trees, + = Full Adder)

8. Techmap logic using PDK: yosys> abc -liberty <pdk.lib>

Uses abc with the pdk library to do technology mapping and optimizations for
all combinational and gate logic.

To find your .libs, please use the find_libs.sh script in asic-tools repository

The actual .lib filenames look like this:

- sky130_fd_sc_hd_tt_025c_1v80.lib (tt = typical speed, 25 C, 1.80 V)
- sky130_fd_sc_hd_ss_100c_1v60.lib (ss = slow speed, 25 C, 1.60 V)
- sky130_fd_sc_hd__ff_n40C_1v95.lib (ff = fast speed, -40 C, 1.95 V)

These are the timing/power models that abc consumes

9. Techmap Registers using PDK: dfflibmap -liberty <pdk>.lib
Same as abc, except for the registers.
yosys> dfflibmap -liberty sky130_fd_sc_hd__tt_025C_1v80.lib

10. Statistics: yosys> stat
Tells you the resource usage statistics of your synthesized model.

11. Output Synthesized HDL Netlist: yosys> write_verilog -sv design_synth.sv
Note: Use the “-sv” flag for SystemVerilog
Outputs your synthesized netlist, where every instance has a unique number,
regardless of type (wire, reg, module), and instances are PDK standard cells.

11.1 Visualize Schematic / Netlist Graph
To see the netlist, you must use the following command:
yosys> show -format dot -prefix design_rtl
***make sure to have xdot installed (sudo apt install xdot)
Open with: ubuntu@asic$ xdot design_rtl.dot

11.2 Visualize the Dataflow Graph
To see the dataflow, you must use the following command:
yosys> viz -format dot -prefix design_viz
***make sure to have xdot installed (sudo apt install xdot)
Open with: ubuntu@asic$ xdot design_viz.dot

11.3 Dump RTLIL
To see the AST after its been lowered into RTL, please use
yosys> write_rtlil design.il

12. Yosys Scripting
Instead of running the same commands over and over again, you can make a .ys
script (such as synth.ys) with a sequence of commands and run it with:
ubuntu@asic:$ yosys -s synth.ys

Note: Yosys cannot create folders, so if you wish to save your results in a folder, it
must exist before running the script or else the files will not be generated.

13. STA (Static Timing Analysis)
Yosys has a built-in sta command, but it’s better to use full-fledged tools like
OpenSTA. If you need to find critical path information quickly, you can use:

yosys> sta -liberty <pdk>.lib

